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Abstract. On the basis of tearing mode theory a simple but physically explicit model of the evolution of
toroidally coupled rotating magnetic islands has been developed. The basic mechanism identified by the
model in the island evolution is the locking in phase of rotating islands that leads to rapid destabilisation of
an initially stable mode. Destabilisation of marginally stable (2, 1) and (3, 1) modes is analysed in several
scenarios. It is shown that mode coupling is an effective way of destabilising a m = 3 island in a low-β
plasma. The numerical examples presented show the individual roles of coupling, inertia and a resistive
wall. The model was applied for the analysis of MHD observations of an ASDEX discharge.

PACS. 52.35.Py Plasma macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning,
tearing, trapped-particle, flute, Rayleigh-Taylor, etc.)

1 Introduction

Magnetic islands, observed in many Tokamak discharges,
are associated with global stability and are believed to in-
fluence energy confinement, although the general problem
of their role on transport is still open [1]. The understand-
ing of how rotating islands evolve and interact with the
plasma and surrounding vessel is of great importance in
the avoidance of locked modes and disruptions, which are
both key issues for a thermonuclear fusion reactor.

The conditions of stability for modes of different he-
licity coupled by toroidal, shaping and finite pressure ef-
fects were developed analytically in first order approxima-
tion by Connor et al. [2,3]. Stability analysis in toroidal
geometry can also be obtained with a variety of linear
full-magnetohydrodynamic (MHD) codes [4]. These very
complete models focus on the conditions of stability of the
interacting modes, but have not yet been used to dis-
play the full temporal evolution. Computational non-
linear evolution of modes in toroidal geometry has been
addressed by Carreras et al. [5]. Although in principle
both linear and non-linear codes can be adapted to study
the numerical evolution of coupled modes, they would not
provide simple analytic terms for inclusion in the present
studies of feedback stabilisation developed in cylindrical
geometry [6–9].

In order to study the evolution of amplitude and ro-
tation of coupled tearing modes, an alternative simpler
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approach is considered here. The evolution of two cou-
pled modes is treated by analogy with the problem of a
single mode driven by external electro-dynamic fields.
This similarity has been noted in reference [6].

The linear stability properties of modes depend sensi-
tively on drift effects in a finite pressure plasma. How-
ever, beyond the linear stage, finite islands subject to
external electro-dynamic fields enter a non-linear driven
regime where the density, temperature (or pressure) gra-
dients which determine the drift frequencies tend to be
flattened and the mode frequency is determined by the
dominating external torques.

A full consideration of Tokamak geometry on (m, n)
mode coupling implies inclusion of finite pressure and flux
surface shaping effects, in addition to toroidal ones. How-
ever an essential feature of the toroidal geometry, surviv-
ing even in the β = 0 limit and circular cross-section torus,
is the appearance of coupling with side-band harmonics
modes. Thus the electro-dynamic coupling can, quite gen-
erally, be represented for any given mode as the effect of
suitable “external” current distribution, provided one can
relate the phase and magnitude of the “effective” currents
to the amplitude and phase of the side-band modes cou-
pled to the mode under consideration. Unlike the problem
of feedback stabilisation by an external current, in the
study of coupling of a (m, n) mode with a (m ± 1, n)
mode, a current sheet of helicity (m ± 1, n) is located
inside the plasma.

In this paper, we consider contributions to the stabil-
ity parameter ∆′ coming from the (m, n) eddy currents
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excited in the resistive wall and from the internal time
varying current sheets located on the surfaces where the
side-band harmonics are resonant. A full-time derivative of
the island angular momentum is taken into account, along
the lines of reference [9]. We consider resistive modes with
poloidal mode numbers m > 1 (a similar approach applied
for the study of the coupling of the m = 1 and m = 2
harmonics can be found in [10]). Having determined the
complex stability parameter for the (m, n) mode, suitable
for a numerical solution, we will then adopt the approxi-
mation of neglecting the effects of finite current density in
the ideal MHD region in order to obtain simpler analytic
expressions for the equations describing the time evolution
of island width and rotation.

The model has been applied to the study of destabilisa-
tion of small islands. Simulations were also carried out for
the analysis of MHD observations of an ASDEX Tokamak
discharge.

2 Formulation of the problem

In the case of toroidal geometry, the magnetic perturba-
tions δB related to magnetic islands with different poloidal
and toroidal mode numbers (m, n) have not only a single
(m, n) component, but also side band harmonics. Each
mode evolves driven by its own free energy and by the
effect of the electro-dynamic (magnetic) fields generated
by other modes, considered as external sources. Therefore
the prototype problem is the investigation of the inter-
action of a magnetic island with a time varying current
sheet source with specified helicity (m, n), amplitude and
phase, located within the plasma. The model is fully spec-
ified when the localised “source currents” are associated
uniquely to the amplitude and phase of the interacting
modes. The tearing mode equation for each mode (m, n)
with inhomogeneous source terms is then solved in order
to obtain the complex stability parameter ∆′ which is sub-
sequently used in a non-linear Rutherford type equation
for island growth [11], associated with the momentum bal-
ance equation governing island rotation.

We adopt a notation appropriate for the large aspect
ratio reduced MHD description [12]. A helical magnetic
field perturbation eventually evolving into a “magnetic
island” is expressed in terms of a helical flux function

δB = Re(∇× (Ψmnbmn)) (1)

where bmn(nr/mR0)θ̂ + ẑ and Ψmn = Ψmn(r)
ei(mθ−nz/R0+φ). The width of the island

W =

√
16R0q2(rs)
rsBq′(rs)

Ψmn(rs) (2)

is related to the amplitude of Ψ at the rational flux sur-
face q(r) (defined as q(r) = rB/R0Bθ, where R0 is the
Tokamak major radius and r the radius of the magnetic
surface). The phase of the mode φ is such that dφ/dt = ω,
ω being the mode frequency.

The linear tearing mode equation for Ψmn is written
in our notation as

− Bθ
µ0rB

∇2
∗Ψmn(m− nq) +

m

r
λ′0Ψmn = 0 (3)

where λ′0 = d/dr(J0‖/B), ∇2
∗ ≡ ∇2

⊥ perpendicular to ẑ
and J0‖ is the equilibrium current density directed along
the magnetic field. The stability parameter obtained from
the solution of (3) in the vicinity of the singular point
r = rs is defined as

∆′Ψmn(rs) = Ψ ′mn(rs+)− Ψ ′mn(rr−). (4)

The evolution of the width and rotation frequency of a
magnetic island are a consequence of Faraday-Ohm’s law
and the current continuity equation. The key role in the
growth and rotation of an island of mode numbers (m, n)
is held by the stability parameter ∆′ which describes the
presence of a current sheet at the resonant surface where
q(r) = m/n.

The real part of ∆′ governs the island growth. In its
non-linear stage the time evolution of the island width
is well described by Rutherford’s expression, as given in
reference [11]

dW
dt

= 1.16
Zeffη

µ0
Re(∆′), (5)

where Zeff is the plasma effective charge and η is the
Spitzer resistivity.

The imaginary part of ∆′ gives the electromagnetic
torque on the island defined as

Tφ =
8π2R0

4µ0
nrsIm(Ψ2

mn(rs)∆′). (6)

The effective toroidal moment of inertia of the amount of
plasma associated with an island of separatrix width (W )
and mode numbers (m, n) is given by

Iφ = λ(m)nmprmR
3
0Wm (7)

where n is the plasma density, mp the proton mass
and λ(m) is a geometric factor. The magnetic island,
moving in the toroidal direction with a angular veloc-
ity equal to ω/n, will be accelerated or decelerated by
this torque. In this work we consider valid the regime
where the poloidal rotation is efficiently damped [13]
by the poloidal projection of the parallel viscous stress,
〈Bθeθ · ∇ ·Π‖〉 ∼= −nmiνiiµliVθ〈B2〉 which dominates the
other driving forces. Here νii, µli are the ion-ion collision
frequency and a viscosity coefficient according to the def-
initions of reference [13]. Consequently poloidal rotation
is neglected and the role of viscosity is essentially that of
allowing relative motion (toroidally) of the island with the
ambient plasma.

In the absence of any torque, inertia will slow down a
growing island in order to conserve angular momentum.
Including these two sources the frequency of the mode will
evolve in time according to

dω
dt

=
1
Iφ

[
n

R0
Tφ − ω

dIφ
dt

]
. (8)
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Fig. 1. Various regions where the flux function needs to be
determined.

The simplest picture is obtained by solving the tearing
mode equation (3) for the mode (m, n) localised at rs,
with the addition of a source term within the plasma with
a current sheet Iv = I exp [i(mθ − nz/R0 + φc)] placed at
r = rc and a resistive wall at r = d (see Fig. 1). The
solution of (3) is obtained by the method of variation of
parameters and it is matched across the different regions
shown in the Figure 1.

The solution of (3) in the different regions is of the
form, developed in reference [8]:

ΨI = ΨsF0+(r) 0 ≤ r ≤ rs
ΨII = C+

IIF+(r) + C−IIF−(r) rs < r ≤ rc
ΨIII = C+

IIIF+(r) + C−IIIF−(r) rc < r ≤ a
ΨIV = C+

IV(r/d)+mC−IV(r/d)−m a < r ≤ d
ΨV = Cw(t)(r/d)−m d < r

(9)

where F0+, F± are dimensionless basic solutions of the
tearing equation without source terms (internal or exter-
nal currents, wall, etc.) which satisfy the boundary condi-
tions

F0+(rs) = F−(rs) = F+(rs) = 1

and F ′+(a) = m/aF+(a); F ′−(a) = −m/aF−(a).

Across the resistive wall we use a constant Ψ approxima-
tion, valid for a thin wall [8,14], i.e. δwall/d � 1/τwallω,
where δwall is the thickness of the wall and τwall =
µ0σwallδwallrwall/2 is the vessel resistive time.

Imposing at rc, a and d the matching conditions to Ψ
and the jump conditions of the type [Ψ ′]rc = µ0Iv/mrc on
the derivative [8], we obtain for regions I and II:

ΨI = ΨsF0+(r) (10)

ΨII = ΨsF−(r) − I−[F+(r) − F−(r)]

−
(a
d

)m (g − D̂[g])
fa,d

[F+(r)− F−(r)]
F+(a)

e−iφ (11)

where I± = (µ0I/rc)(F±(rc)/Ŵ [F+, F−]rc)ei(φc−φ)

appears from the use of the method of variation of

parameters (“Ŵ” stands for the Wronskian of the two
functions),

g(t) = [Ψs − I+ + I−]
(a
d

)m
F−(a)eiφ,

fa,r = 1−
(a
d

)2m F−(a)
F+(a)

,

D̂[g(t)] =
1
τw

∫ t

−∞
g(t′)e

t′−t
τw dt′,

τw =
τwall

m
fa,d.

The complex stability parameter is then given by the eval-
uation at rs of the expression

∆′ = [F ′+(rs)− F ′−(rs)]−
I−

Ψs
[F ′+(rs − F−(rs)]

−
(a
d

)m (g − D̂[g])
fa,d

[F ′+(rs)− F ′−(rs)]
ΨsF+(a)

e−iφ. (12)

The first term on the right hand side of (12) is the natural
stability parameter for the mode (m, n), ∆′0, in the ab-
sence of sources (for islands larger than the resistive layer,
∆′0, is a function of the island width, but does not depend
on the mode frequency). The second term gives the con-
tribution from the current sheet, while the third term is
the contribution from the wall.

Expression (12) supplies a rigorous stability param-
eter, expressed in terms of calculated solutions of the
tearing mode equation for the mode (m, n) without any
sources. It is instructive however, to gain a physical in-
sight into the mechanism of coupling, by writing the cou-
pling coefficients in the “tenuous plasma” approximation
where the current density effects in the ideal MHD re-
gion (far from the reconnecting layer) are neglected and
F±(r) ∼= (r/rs)±m. This leads to Ŵ [F+, F−]rc = −2m/rc;
F ′+ − F ′− = 2m/rs and fa,d ≈ 1; and to leading order we
obtain

∆′m = ∆′0 +
µ0I

Ψs

1
rs

(
rs
rc

)m(m±1−m)

ei(φc−φ)

− 2m
rs

(rs
d

)2m (ωmτwm)2 + i(ωmτwm)
1 + (ωmτwm)2

, (13)

where the exponent m± 1 indicates the interaction of the
mode m, n with either an internal (m−1), n or an external
(m+ 1), n harmonic.

From expressions (5, 8, 13), equations for the tempo-
ral evolution of the island width and frequency can be
obtained as a function of the applied current I and the
phase difference (φc − φ). Given that our goal is to ob-
tain equations describing the coupling between two modes
(m, n) and (m± 1, n), the next step will be to write the
applied current I as a function of the magnitude of the
(m ± 1, n) magnetic perturbation. The phase difference
(φc − φ) will naturally become the phase difference be-
tween the two modes (φm±1,n − φm,n). The conservation
of the total torque of our system based on two modes
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and a conducting wall will provide the means of deter-
mining the equivalent complex stability parameter for the
(m±1, n) mode. In the next section we will derive the sta-
bility parameters of the two coupled (m, n) and (m±1, n)
modes and subsequently the equations for the time evolu-
tion of island width and frequency.

3 The non-linear model including mode
coupling

In toroidal geometry the magnetic flux perturbation will
have a main helicity and a series of side-band harmonics
arising from the dependence on the toroidal helical coor-
dinate χ∗ as shown in reference [15]:

Ψmn(r, θ, ϕ) = Ψmn(r) cosmχ∗, (14)

where

mχ∗ = m(θ − λ sin θ)− nϕ

and λ =
rs
R0

[
1 + βp +

li
2

]
.

From now on the label “n” will be dropped. The (m, n)
side-band harmonic associated to a (m ± 1) magnetic is-
land (modelled by a localised helical current) has a radial
dependence given by

Ψ
(m)
(m±1) = (m± 1)Ψ(m±1)ε

m
s

rs(m±1)

2mR0
(15)

where εs
∼= min(rs(m±1)/r, r/rs(m±1)).

One may observe that the magnitude of the (m, n)
harmonic of the m ± 1 mode is already a function of the
m ± 1 island width (Wm±1 = const

√
Ψ(m±1)). Imposing

the matching condition

d
dr
Ψ (m)(rs(m±1)+)− d

dr
Ψ (m)(rs(m±1)−) = − µ0I

rs(m±1)

one can obtain:

I =
1
µ0

rs(m±1)

R0
(m± 1)Ψs(m±1), (16)

which can also be derived from a full toroidal non-linear
MHD formulation as in reference [5].

Then the stability parameter for the m mode contain-
ing contributions from coupling and the resistive wall is
given as

∆′m = ∆′0(m) +
(m± 1)
R0

rs(m±1)

rsm

(
rsm

rs(m±1)

)m(m±1−m)

×
Ψs(m±1)

Ψsm
ei(φm±1−φm)

− 2M
rsm

(rsm
d

)2m (ωmτwm)2 + i(ωmτwm)
1 + (ωmτwm)2

· (17)

The torque on the m island arising from the imaginary
part of the wall term finds its counterpart on a torque
applied to the conducting vessel due to the time varying
magnetic perturbation penetrating the wall. In order to
maintain global torque balance in the system, there must
be a suitable “coupling” term in the stability parameter
of the m ± 1 island. Moreover, one can easily conclude
that this term should be a function of the amplitudes and
phases of the two modes of the form

∆′coup(m±1) = const
Ψsm

Ψs(m±1)
ei(φm−φm±1). (18)

The coupling coefficient (a single parameter) can be ob-
tained considering that the system is initially in mechan-
ical equilibrium and that the perturbations do not apply
any net torque. Thus the stability parameter of the m± 1
island has a similar structure to expression (17).

We can then obtain the following dynamic system of
equations for the description of the time evolution of the
island width and mode frequency

see following equations

dWm

dt
= 1.16

Zeffηm
µ0

[
∆′m +

(m± 1)
R0

rs(m±1)

rsm

(
rsm

rs(m+1)

)m(m±1−m) km±1W
2
m±1

kmW 2
m

cos(φm±1 − φm)

− 2m
rsm

(rsm
d

)2m (ωmτwm)2

1 + (ωmτwm)2

]
(19)

dωm
dt

=
1

I
(m)
φ

[
2π2n2rsmR0

µ0

(
(m± 1)
R0

rs(m±1)

rsm

(
rsm

rs(m±1)

)m(m±1−m)

kmkm±1W
2
mW

2
m±1 sin(φm±1 − φm)

− 2m
rsm

(rsm
d

)2m (ωmτwm)
1 + (ωmτwm)2

k2
mW

4
m

)
− ωm

dI(m)
φ

dt

]
(20)



M.F.F. Nave et al.: The influence of mode coupling on the non-linear evolution of tearing modes 291

dWm±1

dt
= 1.16

Zeffηm±1

µ0

"
∆′(m±1) +

(m± 1)

R0

�
rsm

rs(m±1)

�m(m±1−m)
kmW

2
m

km±1W 2
m±1

cos(φm − φm±1)

−2(m± 1)

rs(m±1)

�rs(m±1)

d

�2(m±1) (ωm±1τw(m±1))
2

1 + (ωm±1τw(m±1))2

�
(21)

dωm±1

dt
=

1

I
(m±1)
φ

"
2π2n2

m±1rs(m±1)R0

µ0

 
(m± 1)

R0

�
rsm

rs(m±1)

�m(m±1−m)

kmkm±1W
2
mW

2
m±1 sin(φm − φm±1)

−2(m± 1)

rs(m±1)

�rs(m±1)

d

�2(m±1) (ωm±1τw(m±1))

1 + (ωm±1τw(m±1))2
k2
m±1W

4
m±1

�
− ωm±1

dI
(m±1)
φ

dt

#
(22)

where Ψsm = kmW
2
m and Ψs(m±1) = km±1W

2
m±1.

The set of equations (19–22) show the role and com-
petition of the coupling mechanism with the inertia and
the resistive wall effects (N.B. the subscript “o” has been
dropped from the natural stability parameter, which from
now on will be indicated as ∆′). Island stability will de-
pend on the initial conditions, and in a complex way on
the relative amplitude of the various terms, as it will be
shown in the examples below. In the growth equations for
W (19, 21) the coupling term (second term) is an increas-
ing function of the other island width. Coupling may have
either a stabilising or destabilising effect depending on the
difference of phase. The evolution of the phase difference
is essential in the determination of island growth stability
and, it will depend on the coupling as well as on the effect
of the resistive wall and plasma inertia terms on island
rotation.

In the equations for the evolution of the mode fre-
quency (20, 22) the driving torque (first term) is due to
the coupling with the other island, while the second and
third terms represent the resistive wall braking and the
inertia. The toroidal momentum of inertia Iφ ∝ W , con-
tributes to accelerating or slowing down the island rota-
tion frequency, depending on whether the island width is
decreasing or increasing.

A full treatment of the problem of rotating islands
should also include viscosity. Here, we have chosen to con-
sider a low viscosity regime, since our main object in this
paper is to discuss the role of the electro-dynamic cou-
pling. The inertial force should be compared with that
of the viscous force that couples the island rotation to
the surrounding plasma and tends to restore rotation at
the natural frequency ω0 determined by the plasma con-
ditions. The ratio of the viscous force on an island can
be estimated as ξ = (W/rs)(τv/τω), where τω is the rel-
evant time scale of variation of the frequency and τv the
(anomalous) perpendicular viscous damping time scale.
For values of τω < τv(W/rs), inertial effects prevail over
viscous ones. This can occur for relatively large islands
W/rs ∼ 10−1 and the typical estimate of τv ∼ τE, the
energy confinement time.

4 Stability of coupled m = 2 and m = 3
tearing modes

In this section, we illustrate the proprieties of the above
model by making a study of the stability of coupledm = 2
and m = 3 modes with toroidal mode number n = 1. We
start by showing the effect of coupling on two marginally
stable modes, both in rotating and non-rotating scenarios.
Stability depends on the competition of the various terms
in equations (20–23) which will be introduced one by one
for added clarity.

In all numerical simulations we have taken a parabolic
j profile j = j0(1−x2)2, where x = r/a, with the resonant
surfaces at rs2/a = 0.74, rs3/a = 0.95, and aspect ratio
ε = 4. The moment of inertia is calculated for a plasma
with a parabolic density profile, n = n0(1− x2) with cen-
tral density n0 = 5× 1019 m−3, while for the wall we use
a/d = 0.7 and τwall = 15 ms. These parameters are rele-
vant for the ASDEX experimental results discussed in Sec-
tion 5. Here for simplicity we take the constant Zeffη/µ0,
which appear in the equations for dW/dt, to be the same
for both modes. Proper experimental radial profiles are
considered in Section 5.

4.1 The effect of coupling on island growth

In order to illustrate the effect of coupling on the stability
of magnetic islands, we start by considering a simple case
where the natural ∆′ and the wall terms are neglected. It
should be noted that the instability index ∆′ is indeed a
non-linear function of the island width W , which eventu-
ally gives a contribution to the island evolution. However
this is a result of the feedback to the background plasma
profiles, which cannot be included in the simple model we
consider presently for the definite purpose of investigating
a regime of dominating toroidal coupling.

First we consider the effect of coupling on island
growth when the two marginally stable islands do not
rotate. The evolution of the island widths is simply
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(a)

(b)

Fig. 2. The effect of coupling on marginally stable, non-
rotating islands. For ∆φ = 0 mode coupling makes both modes
unstable.

given by

dW2

dt
= c2

W 2
3

W 2
2

cos∆φ, (23)

dW3

dt
= c3

W 2
2

W 2
3

cos∆φ. (24)

Thus for any given phase difference, ∆φ = φ3−φ2, the is-
land widths evolve in accord with the relation W 5

3 (t) −
W 5

3 (0) = (9/4)(x3
2/x

3
3)(s2

2/s
2
3){W 5

2 (t) − W 5
2 (0)}, which

shows that island growth is determined by the ratio of the
initial island sizes, and by the relative position of the two
rational surfaces and shear (defined as s = (1/q)(dq/dx)).

Clearly, stability for both modes depend on the sign
of the phase difference, such that both islands are non-
linearly unstable when 0 ≤ |∆φ| < π/2. The simulations
in Figures 2 and 3 show cases with fixed phase differences
∆φ = 0 and ∆φ = π, respectively.

When ∆φ = 0, coupling makes both modes non-
linearly unstable, independent of their initial sizes. This is
shown in Figure 2a for initially identical island sizes and,
in Figure 2b for an m = 2 island initially one order of
magnitude larger than the m = 3 island. In the latter,
the larger coupling term for the m = 3 island brings its
width to a size comparable to the width of the m = 2 in
∼ 200 ms. It can be easily perceived that, asymptotically,
the coupling leads to an equal growth of both islands.
Therefore, the width of the (3, 1) island will ultimately
evolve parallel to the (2, 1) island width. Depending on
the constants, the (3, 1) island may evolve into a size larger
than the (2, 1).

Figure 3 shows that when ∆φ = π, stability for both
modes increase. In Figure 3a where the two modes have
initially identical widths, the m = 2 mode decreases in
size faster than the m = 3. In Figure 3b a small offset in
the initial island sizes reverses this result, with the m = 3
decreasing in size, while the m = 2 remains marginally

(a)

(b)

Fig. 3. With ∆φ = π, stability for both modes increase (in
order to avoid a divergent solution, W was not allowed to de-
crease below 0.1 cm).

stable. The bifurcation point corresponds to the condition

d2W2

dt2
=

d2W3

dt2
= 0,

leading to a critical (2, 1) island width given by

W2|crit =
[

4
9
x3

3

x3
2

s2
3

s2
2

]1/5

W3.

4.2 Phase locking

In the two previous examples the two modes were kept at
rest. However in practice this is not possible since even if
the wall is neglected, the phases will change due to the
effects of coupling and inertia. Coupling on its own makes
both modes oscillate around an average frequency.

Figure 4 shows an example with similar initial condi-
tions to the ones in Figure 2a, i.e. W2(0) = W3(0) and
ω2(0) = ω3(0) = 0. However, the frequency is now allowed
to evolve, with the inertia term on average one order of
magnitude smaller than the electromagnetic torque due to
the coupling. The initial phase difference is ∆φ(0) = π/2,
thus the initial coupling on the island sizes is zero. Both
island sizes remain nearly unchanged in the initial 5 ms.
On the other hand, the difference of phase changes due to
the non-null electromagnetic torque. At zero phase differ-
ence both islands become unstable. Island growth contin-
ues until the phase difference goes through an extremum
value and a new period of marginal stability starts. The
dominant coupling torque ensures that the phase differ-
ence on average locks to zero, which is an unstable sit-
uation, thus the overall effect is that of both islands on
average increasing in size similarly to the example shown
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Fig. 4. The effect of coupling on marginally stable modes with
initial ω(0) = 0 and ∆φ = π/2.

Fig. 5. The effect of coupling on marginally stable modes with
initial ω(0) = 4 kHz and ∆φ = 0.

in Figure 2a, while the frequencies oscillate around zero
(N.B. in all figures given below the frequency is expressed
in cycles/s).

A large initial frequency, such that the inertia term
in the equation for the frequency is dominant, enforces
marginal stability for a longer period of time. The simu-
lation in Figure 5, shows that while the initial frequen-
cies are large, both islands are kept marginally stable
on average. This result holds independent of the ini-
tial value of the phase difference. In Figure 5, marginal
stability is maintained until nearly 15 ms (even though
we have started with the most unstable phase difference,
i.e. ∆φ(0) = 0). As the mode frequency decreases and
the electromagnetic torque starts to compete with inertia,

Fig. 6. As the example in Figure 5, but including the wall
terms.

the phase difference once more, on average, locks to zero
with the consequence that island stability is lost (again
rendering the result of Fig. 2a).

Phase locking with ∆φ = 0 leads to frequency locking.
In the absence of a wall (and neglecting the viscous drag),
the average frequency is determined by the plasma inertia
term. Then the average frequency evolves as

ω(t) =
ω(0)W (0)
W (t)

·

Differential rotation, i.e. ω2(0) 6= ω3(0), and island sizes
with initial different values, will change the time of phase
locking, but overall will lead to similar results to those
shown in Figures 4 and 5. An example with differential
rotation is shown later in Section 5.

4.3 The effect of the wall

The stabilising and damping effects that the wall has on
the growth and rotation of the modes, limit the achieve-
ment of a phase lock between the modes. For large fre-
quencies, where the inertial term dominates the mode
frequency evolution, different scenarios can be identified
for ∆φ(0) = 0, where the islands may or not be desta-
bilised according to the magnitude of the initial islands
width.

First, when both island widths are small (W/a ∼
10−2), phase lock does not occur since the stabilising ef-
fect of the wall weakens the coupling effect on the mode
rotation. (This is shown in Fig. 6 for an input frequency,
ω2(0) = ω3(0) = 4 kHz.) In this small island width limit,
the electromagnetic torque arising both from the wall
(relevant mainly for low frequencies) and from coupling
are much smaller than the inertial contribution. On the
other hand, if the initial island widths are increased to
W/a ≥ 5 × 10−1, increasing coupling, the general result
obtained is the one where both islands are destabilised
and phase lock is easily accomplished (as it will be shown
below in the examples where all terms are included).
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Fig. 7. Different initial island width scenario (W2(0) = 5 cm,
W3(0) = 2 cm) showing a transient period where stabilisation
of the (2, 1) island is accompanied by a decrease in frequency.

There is however a scenario worth mentioning, which
is obtained when the initial island sizes are not identi-
cal, and one of the modes has a considerably larger island
width. In Figure 7, we show the case where W2/a ≥ 10−1,
while W3/a ≈ 5 × 10−2. Since the magnitude of the cou-
pling term in the rotation of both islands is now two or-
ders of magnitude larger than in the example in Figure 6,
phase locking occurs. However, in this case phase locking
does not imply in an immediate loss of stability. Since the
wall plays an important role in the stability of the (2, 1)
mode, it allows for a transient period of around 60 ms
where island stabilisation is maintained while the rota-
tion frequency decreases. Due to the relative difference
in the initial island widths, coupling is only marginally
affecting the stability of the (2, 1) island. Up to here,
we have neglected the natural stability parameter (i.e. we
have taken ∆′2 = ∆′3 = 0). In many Tokamak situations,
with parabolic-type j-profiles, ∆′2 = 0, while ∆′3 ≤ 0.
Below, we show a solution of equations (19–22) with all
terms included. Numerical simulations were done for the
case of W2/a ∼ 5× 10−2 and W3/a ∼ 10−2 for 3 different
wall conditions, namely: a resistive wall, a perfectly con-
ducting wall and a wall at infinity. The input frequency is
ω2(0) = ω3(0) = 4 kHz and ∆φ(0) = 0 as in the previous
two figures. The stability parameters ∆′2(W ) and ∆′3(W )
considered, are shown in Figure 8. These were obtained
in a quasi-linear approximation from the solution of the
tearing mode equation.

The results of the simulations are shown in Figure 9.
Mode coupling ensures phase locking with the consequent
destabilisation of the (3, 1) mode instability in just a few
micro-seconds. The slow saturation of the W (t) curves is
controlled by ∆′2(W ). The average rotation frequency is
controlled mostly by inertia, except at low frequencies in
the resistive wall case, where both islands are brought to
rest due to locking to the wall at t = 170 ms. In the
other two cases the final frequency is determined by ex-
pression (26), i.e. the frequency tends asymptotically to a
value ωfinal

∼= ω(0)W (0)/W sat
2 (with W sat

2 ∼ 10 cm in this
example).

(a)

(b)

Fig. 8. (a) Current density and q-profile used in the numerical
simulations. (b) Corresponding stability parameters obtained
from the solution of the tearing mode equation.

5 An experimental scenario

The model presented above, is able to explain many of
the features observed in Mirnov oscillations measured in
Tokamak experiments. Here we show its application to the
analysis of instabilities preceding disruptions observed in
lower hybrid current drive (LHCD) discharges in the AS-
DEX Tokamak. This medium-sized machine had a major
radius R0 = 1.65 m, plasma column radius a = 0.4 m and
operated at magnetic fields of up to 2.2 T. It provided
during its latest operational phase useful information on
the correlation between magnetic and broad-band reflec-
tometry data [16]. The simulations presented here corre-
spond to a discharge with a total current of 320 kA, a
peaked current density profile which can be approximated
by the parabolic profile shown in Figure 8, with a safety
factor at magnetic axis and plasma edge q(0) = 1.11 and
q(a) = 3.33 respectively and temperatures of 0.5 keV and
0.2 keV at the rational surfaces of the (2, 1) and (3, 1)
modes respectively. The skin time of the vessel has the
experimental value of 15 ms.

Lower-hybrid current drive discharges in ASDEX in-
dicated that the (2, 1) tearing mode could be destabilised
due to the change in the current density profile (caused by
the localised power deposition of the waves), often lead-
ing to mode locking and a major plasma disruption [17].
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(a)

(b)

Fig. 9. Simulation with all terms included, for 3 different
wall configurations. The initial input parameters are W2(0) =
2.5 cm, W3(0) = 1 cm, ω2(0) = ω3(0) = 4 kHz and ∆φ(0) = 0.
The stability parameters ∆′2(W ) and ∆′3(W ) used are shown
in Figure 8.

In the discharge considered here, a rotating (2, 1) mode
is identified from magnetic pick-up signals (see Fig. 10).
Further evidence for a (2, 1) island is obtained from the
analysis of microwave reflectometry corresponding to a
broadband sweep operation lasting 2 ms, taken at inter-
vals of 5 ms. The evolution of the increment of the phase
during the sweep (∆Φ/∆F ) plotted versus density allows
the identification of deformations in the density profiles
obtained from the phase derivative through an Abel inver-
sion (see Fig. 11). Electron density perturbations located
around the q = 2 surface were observed both before and
after mode locking (tlock = 1.577 s). Before mode locking
(at t = 1.575 s) the observed density perturbation rotates
with a frequency of 500 Hz. During mode locking (when
the non-rotating (2, 1) mode is no longer detected in the
magnetic signals), the phase derivative shows an abrupt
increase for ne = 1.2 × 1019 m−3 (see Fig. 11a), indicat-
ing a sudden displacement inwards of the reflecting layers
close to that density. The corresponding electron density
profile (Fig. 11b) shows a plateau around the q = 2 sur-
face. This indicated the presence of a (2, 1) island which
grows from a width of 8 cm (at t = 1.580 s) until it reaches
a width of ∼ 10 cm before the disruption (tdisr = 1.587 s).
The high spatial resolution of the reflectometry diagnos-
tic (1 cm), allows also the observation of much lower

Fig. 10. Magnetic signal measured in ASDEX for discharge
(#29285) showing the following MHD behaviour: at t =
1.550 s, a (2, 1) mode is destabilised; the mode grows rapidly
and mode locking occurs at t = 1.578 s. A disruption occurs
at t = 1.586 s. The dashed regions correspond to the time
intervals of reflectometer measurements (sweep time of 2 ms).

amplitude modes, sometimes undetectable in the magnetic
signals. The reflectometry measurements, in Figure 11,
show a small plateau around the radius of the q = 3 sur-
face, possibly indicating the presence of a (3, 1) island.
The latter is only observed after locking of the (2, 1) is-
land, and given the time resolution of the diagnostic, it is
not possible to say the precise time when it became un-
stable or what is its initial evolution. Reflectometry mea-
surements show however that the disruption occurs soon
after the (2, 1) and (3, 1) islands have grown large enough
to overlap. Another interesting observation is that locking
for both modes has not occurred simultaneously. Reflec-
tometry measurements taken after the (2, 1) mode has
locked, indicate that the (3, 1) mode is still either rotat-
ing or oscillating for at least another 5 ms.

The results of simulations are shown in Figure 12.
These are not intended to reproduce the experimental
observation in detail, but rather to show that the non-
linear model presented above is able to explain many of
the observed characteristics. The calculated evolution of
the amplitude and frequency of the m = 2, n = 1 mode
up to the time of locking is consistent with the observed
one. The simulation shows that after the m = 2 island
locks, the m = 3 will continue to oscillate for another
5 ms (Fig. 12b), in agreement with the observations made
with reflectometer data. After the locking of both islands,
further growth of the modes leads to island overlap on a
time scale that agrees also with the time when ASDEX
disruptions were observed (∼ 10 ms after the locking).
This realistic example further illustrates that the toroidal
coupling between the (2, 1) and (3, 1) islands strongly af-
fects the amplitude and rotation of the outer (3, 1) island.
Notice that although the frequencies are initially differ-
ent, the two modes soon start to rotate with the frequency
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(a) (b)

Fig. 11. Results from broad-band reflectometry obtained in the ASDEX Tokamak for discharge 29285, at t = 1.58 ms, when
locking of the m = 2, n = 1 mode occurred. The abrupt jumps in the phase derivative ∆φ/∆F (a) correspond to the flattening
of the plasma density in the evaluated density profiles (b), revealing the influence of magnetic islands located near the rational
surfaces q = 2 (r ∼ 30 cm) and q = 3 (r ∼ 39 cm).

(a) (b)

Fig. 12. Simulation of (2, 1) and (3, 1) islands observed in an ASDEX discharge before a disruption. The following input
parameters were used: W2(0) = 6.0 cm, W3(0) = 1.5 cm, ω2(0) = 2.2 kHz, ω3(0) = 1.7 kHz, f2 = f3 = 0, with ∆′2(W ) > 0 and
∆′3(W ) < 0 shown in Figure 8. (a) Plots of W and ω as a function of time; (b) plot of the phases as a function of time around
the time of locking. The m = 3, n = 1 mode continues to oscillate after the locking of the m = 2, n = 1 mode.

of the larger (2, 1) mode. Each island rotates, as well as
oscillates in the potential of the other.

6 Conclusions

On the basis of tearing mode theory we have developed
a relatively simple and physically explicit model of the
evolution of toroidally coupled rotating magnetic islands.
The basic mechanism identified by the model in the island
evolution is the locking in phase of rotating islands on one

another, that leads to rapid destabilisation of an initially
stable mode (∆′(0) ≤ 0). The island growth is governed by
the phase dependent coupling term, on its turn dependent
on the eddy currents induced in the resistive wall, which
cause also the known slowing of the rotation [14].

The combined effects of coupling, wall and inertia
can compete and overcome other intrinsic destabilising
effects, not included here, as for instance a neo-classical
driving term (αβp) [18], possibly explaining observations
of larger than expected m = 3 islands in low βp dis-
charges in the JET Tokamak [19]. In addition, in this work,
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for the purpose of isolating and understanding the role of
the electrodynamic coupling mechanism, the drag on the
toroidal motion due to perpendicular viscosity has been
neglected. Viscosity would not alter the phase space topol-
ogy of the dynamic system studied here, but only the time
scales. Viscosity is important when the two interacting is-
lands are sufficiently close to each other. Then the viscous
torques can make the plasma “trapped” inside both is-
lands to rotate with the same toroidal velocity. As it was
shown in the examples in Sections 4 and 5, coupling leads
to phase-locking with a phase-difference which in general
it is destabilising. A viscous layer ultimately produces a
modification in the effective toroidal moment of inertia
of the island, and introduces a further destabilising phase
shift between two islands. The viscous layer around each
island provides smooth velocity gradients around each is-
land and thus, allows for the inertial effect related to the
island growth considered in this paper.

It is important to consider the role of mode coupling in
the schemes of feedback control of the tearing instabilities.
The analytic expressions for the electromagnetic torque
and modification to the stability parameter presented in
the dynamic system given in equations (19–22), can be
easily included in existent work on feedback stabilisation.
This system of equations was obtained in the “tenuous”
plasma limit, which is an appropriate approximation for
MHD modes located in the outer regions of a Tokamak
plasma.

Several simulations were presented which illustrate the
individual role of coupling, plasma inertia and resistive
vessel in the non-linear stability of m = 2 and m = 3
modes with toroidal number n = 1. For realistic Toka-
mak parameters we find that an initially small and stable
m = 3 island, with an island size of the order of the ion
Larmor radius, could grow to a size comparable to a much
larger m = 2 island, say W2/a = 0.2, in a few hundred
milliseconds. It is also possible to obtain solutions where
W3 would become larger than W2. (In the examples solved
for Fig. 2, smaller changes in the current density equilib-
rium profile could lead to such solutions.) In practice, is-
land overlapping is likely to lead to disruption before that
could be observed.

In the examples shown in Figures 2a and 2b, where
rotation was neglected, given the appropriate phase, an
m = 3 island is always unstable independent of the initial
size of the driving m = 2 island. In a more general case,
with the resistive wall included, non-linear m = 3 growth
occurs only for W2/W3 above a certain threshold value.
In order to get mode destabilisation by coupling, phase
lock between the modes must be achieved. In the limits
of no wall or ω → 0 and of a perfectly conducting wall or
ωτwall � 0 coupling leads to locking of the phases with an
average phase difference ∆φ = 0. In general, phase locking
may also occur for ∆φ 6= 0.

Previous studies on the effect of a resistive wall indi-
cated that rotation is stabilising [11], it should be noted

that with mode coupling this is not always true. The ex-
ample in Figure 7 shows that at least transiently it is
possible to obtain solutions where a mode remains stable
in spite of the frequency being decreased.

The model was applied to the interpretation of MHD
observations in LHCD discharges made on ASDEX. The
calculated evolution of the island widths and frequencies
were found to be consistent with the evolution of (2, 1)
and (3, 1) modes preceding a disruption as observed with
the magnetic and density reflectometer diagnostics.
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like to acknowledge useful discussions with Dr. P. Savrukhin.
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mode stability.
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